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  Abstract

 

There has been considerable work in AI on decision-
theoretic planning and planning under uncertainty.
Unfortunately, all of this work suffers from one or more of
the following limitations: 1) it relies on very simple models
of actions and time, 2) it assumes that uncertainty is
manifested in discrete action outcomes, and 3) it is only
practical for very small problems. For many real world
problems, these assumptions fail to hold. A case in point is
planning the activities for a Mars rover. For this domain none
of the above assumptions are valid: 1) actions can be
concurrent and have differing durations, 2) there is
uncertainty concerning action durations and consumption of
continuous resources like power, and 3) typical daily plans
involve on the order of a hundred actions. We describe the
rover problem, discuss previous work on planning under
uncertainty, and present a detailed, but very small, example
illustrating some of the difficulties of finding good plans.

 

The Problem

 

Consider a rover operating on the surface of Mars. On a giv-
en day, there are a number of different scientific observa-
tions or experiments that the rover could perform, and these
are prioritized in some fashion (each observation or experi-
ment is assigned a scientific value). Different observations
and experiments take differing amounts of time and con-
sume differing amounts of power and data storage. There
are, in general, a number of constraints that govern the rov-
er’s activities:

• There are time, power, data storage, and positioning
constraints for performing different activities. Time con-
straints often result from illumination requirements – that
is, experiments may require that a target rock or sample be
illuminated with a certain intensity, or from a certain an-
gle. 

• Experiments have setup conditions (preconditions) that
must hold before they can be performed. For example, the
rover will usually need to be at a particular location and
orientation for each experiment and will need instruments

turned on, initialized, and calibrated. In general, there may
be multiple ways of achieving some of these setup condi-
tions (

 

e.g.

 

 different travel routes, different choice of cam-
eras).

• The amount of power available varies according to the
time of day, since solar flux is a function of the angle of
the sun.

Given these constraints, the objective is to maximize scien-
tific return for the rover – that is, find the plan with maximal
utility. Unfortunately, for many rover activities, there is in-
herent uncertainty about the duration of tasks, the power re-
quired, the data storage necessary, the position and
orientation of the rover, and environmental factors that influ-
ence operations, 

 

e.g.

 

, soil characteristics, dust on the solar
panels, ambient temperature, etc.

For example, in driving from one location to another, the
amount of time required depends on wheel slippage and
sinkage, which varies depending on slope, terrain rough-
ness, and soil characteristics. All of these factors also influ-
ence the amount of power that is consumed. The amount of
energy collected by the solar panels during this traverse de-
pends on the length of the traverse, but also on the angle of
the solar panels. This is dictated by the slope and roughness
of the terrain.

Similarly, for certain types of instruments, temperature
affects the signal to noise ratio and, hence, affects the
amount of time required to collect useful data. Since the
temperature varies depending on the time of day and the
weather conditions, this duration is uncertain. The amount
of power used depends upon the duration of the data collec-
tion. The amount of data storage required depends on the ef-
fectiveness of the data compression techniques, which
ultimately depends on the nature of the data collected.

In short, this domain is rife with uncertainty. Plans that do
not take this uncertainty into account usually fail miserably.
In fact, it has been estimated that the 1997 Mars Pathfinder
rover spent between 40% and 75% of its time doing nothing
because of plan failure.
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One way to attack this problem is to rely on real-time or

 

reactive

 

 replanning when failures occur. While this capabil-
ity is certainly desirable, there are several difficulties with
exclusive reliance on this approach:

• Spacecraft and rovers have severely limited computa-
tional resources due to power limitations and radiation
hardening requirements. As a result, it is not always feasi-
ble to do timely onboard replanning.

• Many actions are potentially risky and require pre-ap-
proval by mission operations personnel. Because of the
cost and difficulty of communication, the rover receives
infrequent command uplinks (typically one per day). As a
result, each daily plan must be constructed and checked
for safety well in advance.

• Some contingencies require anticipation; 

 

e.g.

 

, switch-
ing to a backup system may require that the backup sys-
tem be warmed up in advance. For time critical operations
such as orbit insertions or landing operations there is in-
sufficient time to perform these setup operations once the
contingency has occurred, no matter how fast the planning
can be done.

For these reasons, it is sometimes necessary to plan in ad-
vance for potential contingencies – that is, anticipate unex-
pected outcomes and events and plan for them in advance.

The problem that we have just described is essentially a
decision-theoretic planning problem. More precisely, the
problem is to produce a (concurrent) plan with maximal ex-
pected utility, given the following domain information:

• A set of possible goals that may be achievable, each of
which has a value or reward associated with it.

• A set of initial conditions, which may involve uncer-
tainty about continuous quantities like temperature, en-
ergy available, solar flux, and position. This
uncertainty is characterized by probability distribu-
tions over the possible values.

• A set of possible actions, each of which is character-
ized by:

– a set of conditions that must be true before the
action can be performed. (These may include metric
temporal constraints as well as constraints on
resource availability.)

– an uncertain duration characterized by a probability
distribution.

– a set of certain and uncertain effects that describe
the world following the action. Uncertain effects on
continuous variables are characterized by probabil-
ity distributions.

Decision-theoretic planning is already known to be quite
hard both in theory [18] and in practice. However, there are
some characteristics of this domain, which, when taken to-
gether, make this planning problem both difficult and differ-
ent from the kinds of problems that have been studied in the
past:

•

 

Time

 

 – actions take differing amounts of time and con-

currency is often necessary.

•

 

Continuous outcomes

 

 – most of the uncertainty is as-
sociated with continuous quantities like time and pow-
er. In other words, actions do not have a small number
of discrete outcomes.

•

 

Problem size

 

 – a typical daily plan for a rover will in-
volve on the order of a hundred actions.

While we have described this scenario for a rover, this kind
of problem is not limited to robotics or even space applica-
tions. For example, in a logistics problem, travel durations
are influenced by both traffic and weather considerations.
Fuel use is likewise influenced by these “environmental”
factors. There are temporal constraints on the availability
and delivery of cargo, as well as on the availability of both
facilities and crew. There are also constraints on fuel loading
and availability, and on maintenance operations.

 

Previous Work

 

There has been considerable work in AI on planning under
uncertainty. Table 1 classifies much of this work along the
following two dimensions:

•

 

Representation of uncertainty

 

 – whether uncertainty
is modeled strictly logically, using disjunctions, or is
modeled numerically, with probabilities.

•

 

Observability assumptions

 

 – whether the uncertain
outcomes of actions are not observable, partially ob-
servable, or fully observable. 

We do not discuss this work in detail here. A survey of some
of this work can be found in Blythe [5]. A more detailed sur-
vey of work on MDPs and POMDPs can be found in Boutil-
ier, Dean and Hanks [7]. Instead we will focus on why this

 

Disjunction Probability

Non-Observable

 

CGP [31]
CMBP [9, 1]

C-PLAN [13, 8]
Fragplan [16]

Buridan [17]
UDTPOP [23]

 

Partially-
Observable

 

SENSp [12]
Cassandra [25]
PUCCINI [14]

SGP [34]
QBF-Plan [27]

GPT [6]
MBP [2]

C-Buridan [10]
DTPOP [23]

C-MAXPLAN [19]
ZANDER [19]
Mahinur [22]
POMDP [7]

 

Fully-Observable

 

WARPLAN-C [33]
CNLP [24]

JIC [11]
Plinth [15]
Weaver [4]

PGP [3]
MDP [7]

 

Table 1: 

 

A classification of planners that deal with uncertainty.
Planers in the top row are often referred to as 

 

conformant

 

planners, while those in the other two rows are often referred to as

 

contingency

 

 planners.
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work is generally not applicable to the rover problem and
what can be done about this.

There are a number of difficulties in attempting to apply
existing work on planning under uncertainty to spacecraft or
rovers. First of all, the work listed in Table 1 assumes a very
simple model of action in which concurrent actions are not
permitted, explicit time constraints are not allowed, and ac-
tions are considered to be instantaneous. As we said above,
none of these assumptions hold for typical spacecraft or rov-
er operations. These characteristics are not as much of an ob-
stacle for Partial-Order Planning frameworks such as
SENSp [

 

12

 

], PUCCINI [

 

14]

 

, WARPLAN-C [

 

33]

 

, CNLP [

 

24

 

],
Buridan [

 

17

 

], UDTPOP [

 

23

 

], C-Buridan [

 

10

 

], DTPOP [

 

23

 

],
Mahinur [

 

22

 

] and Weaver [

 

4]

 

. In theory, these systems could
represent plans with concurrent actions and complex tempo-
ral constraints. The requirements for a rich model of time
and action are more problematic for planning techniques
that are based on the MDP or POMDP representations, sat-
isfiability encodings, the graphplan representation, or state-
space encodings. These techniques rely heavily on a discrete
model of time and action. (See [30] for a more detailed dis-
cussion of this issue.) Although semi-Markov decision pro-
cesses (SMDPs) [26] can be used to represent actions with
uncertain durations, they cannot model concurrent actions
with complex temporal dependencies. The factorial MDP
model has recently been developed to allow concurrent ac-
tions in an MDP framework. However, this model is limited
to discrete time and state representations. Moreover, existing
solution techniques are either too general to be efficient on
real-world problems (

 

e.g.

 

 Singh and Cohn [28]), or too do-
main-specific to be applicable to the rover problem (

 

e.g.

 

Meuleau 

 

et al.

 

 [20]).
A second, and equally serious, problem with existing

contingency planning techniques is that they all assume that
uncertain actions have a small number of discrete outcomes.
For example, in the representation popularized by Buridan
and C-Buridan, a rover movement action might be character-
ized as shown in Figure 1. In this representation, each arrow

to a propositions on the right indicates a possible outcome of
the action, along with the associated probability of that tran-
sition.

 

3

 

 To characterize where a rover could end up after a
move operation, we have to list all the different possible dis-
crete locations. We would need to do something similar to

characterize power usage. For most spacecraft and rover ac-
tivities this kind of discrete representation is impractical –
most of the uncertainty involves continuous quantities, such
as the amount of time and power an activity requires. Action
outcomes are distributions over these continuous quantities.
There is some recent work using models with continuous ac-
tion outcomes in both the MDP [29, 21] and POMDP [32]
literature, but this has not yet been applied to SMDPs and
has primarily been applied to reinforcement learning rather
than planning problems.

Ultimately, the state that results from performing an
action determines the future actions that will be taken, so in
this sense an action's outcomes are discretized. However,
this discretization is not a static property of the actions–
instead, it depends on what goals or subgoals the planner is
trying to accomplish. For example, suppose that the rover is
trying to move to a certain location. If the objective is to
place an instrument on a particular rock feature, then the
tolerance in position is quite small. In contrast, if the objec-
tive is to take a picture from a different vantage point, then
the tolerance can be significantly larger.

A third problem with conventional contingency planning
technology is that it does not scale to larger problems. Part
of the problem is that most of the algorithms attempt to ac-
count for all possible contingencies. In effect, they try to
produce 

 

policies

 

. For spacecraft and rover operations, this is
not realistic or tractable – a daily plan can involve on the or-
der of a hundred operations, many of which have uncertain
outcomes that can impact downstream actions. The resulting
plans must also be simple enough that they can be under-
stood by mission operators, and it must be feasible to do de-
tailed simulation and validation on them in a limited time
period. This means that a planner can only afford to plan in
advance for the “important” contingencies and must leave
the rest to run-time replanning. Of the planning systems dis-
cussed above, only 

 

Just-In-Case

 

 (JIC) contingency schedul-
ing [11] and Mahinur [22] exhibit a principled approach to
choosing what contingencies to focus on. We will discuss
this approach in more detail later.

 

A Detailed Example

 

In order to illustrate the problem further, in this section we
give a detailed example of a very small rover problem. Fig-
ure 2 shows a “primary” plan and two potential branches.
The primary plan consists of approaching a target point (Vi-
sualServo), digging the soil (Dig), backing up (Drive), and
taking spectral images of the area (NIR). One potential alter-
nate branch consists of replacing the spectral image with a
high-resolution camera image of the target (Hi res). A sec-
ond potential branch consists of taking a low-resolution pan-
orama of the area (Lo res), performing on-board image
analysis to find rocks in the panorama (Rock finder), and
then taking spectral images of the rocks found (NIR). For
this example, we assume that energy is only being depleted.
(More generally, a rover would also be receiving energy in-
put from charging.

 

Figure 1:  

 

A C-Buridan action for movement.

 

3. We have omitted some details here. For each transition, there is
a condition that the rover must be at location [1,1] to start with,
and that the rover is no longer at [1,1] for each outcome.

Move([1,1],[4,4])

At([3,3])

At([3,4])

At([4,3])

At([4,4])

…

.5
.1

.1

.05
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Precedence constraints are denoted by arrows in the fig-
ure; for example, since HiRes can only be performed after
Drive, there is an arrow from Drive to HiRes. For each ac-
tion, there may be preconditions, expectations, and a local
utility; in the figure, these appear above the plan actions. The
preconditions specify under what conditions execution of
the action may start. The expectations describe the expected
resource consumption of the actions (in terms of mean and
standard deviation); the relative width of distributions is il-
lustrated graphically as well. The local utility is the reward
received when the action terminates successfully: in this ex-
ample, this will be when the preconditions are met and when
the energy resource is non-negative at the end of execution.

In the example, consider the HiRes action. It has an ener-
gy precondition E > 0.02 Ah and a time precondition of 9:00

 

≤

 

 t 

 

≤

 

 16:00. The expected energy usage is 0.01 Amp-hours
(Ah) with a standard deviation of 0 Ah (so in this case there
is no uncertainty in the model). The expected duration is 5
seconds with a standard deviation of 1 second. The local
utility of the action is v=10.

 

Approaches

 

There are several possible ways of attacking this problem of
planning with continuous uncertain variables. In this sec-
tion, we briefly discuss some of these, and the issues that
arise.

 

Computing the Optimal Value Function

 

Figure 3 shows the optimal value function for the problem in
Figure 2. The figure was computed by working backwards

from all possible activities that have positive reward and us-
ing dynamic programming to construct the optimal plan.
The curved hump where there is lots of power and time
available corresponds to the primary plan, while the rectan-
gular block corresponds to branching to the Rock finder plan
and completing the NIR. The tail of the curved hump is a
branch after the drive action to the HiRes plan. The flat sur-
face with value 5 is again an immediate branch to the Rock-
Finder plan, but in this area there is not enough power or
time to complete the plan, and only the LoRes reward is re-
ceived. Figure 5 shows a cross-section through this surface
for power equal to 11, showing how the various branches
contribute to the overall plan. Note that the utility of the
overall plan is higher in some places than the value of any
original branch. This is because future branch points allow
us to wait and see whether a particular plan will succeed, and
if it is unlikely to succeed, we can take an alternative branch.

Given a detailed contingent plan and the distributions for
time and resource usage, it is relatively straightforward to
evaluate the expected utility of the plan. If the distributions
are very simple, it may be possible to compute this quantity
exactly; more generally, this will have to be done with sto-
chastic simulation. Thus, if we could generate all possible
contingent plans for a problem, we could evaluate each of
them and choose the one with highest utility. Of course this
is completely impractical for problems of any size, partly
because it is impossible to enumerate the conditions for con-

 

Figure 2:  

 

A detailed rover problem. A “main” plan, and two
possible alternative branch plans are shown. Probability
distributions for time and energy usage are shown for each action.
Time and energy constraints for actions are shown in bold.

Dig(60) Drive(-2) NIRVisualServo(27 13)

Lo res NIRRock finder

Hi res

µ = 1000 s
σ = 500 s

µ = 60 s
σ = 1 s

µ = 40 s
σ = 20 s

µ = 5 Ah
σ = 2.5 Ah

E > 10 Ah
µ = .05 Ah
σ = .02 Ah

E > .1 Ah
µ = .2 Ah
σ = .2 Ah

E > .6 Ah
µ = 2 Ah
σ = .5 Ah

E > 3 Ah

µ = 600 s
σ = 60 s

t ∈∈∈∈  [10:00, 14:00]

µ = 120 s
σ = 20 s

µ = .01 Ah
σ = 0 Ah

E > .02 Ah
µ = .1 Ah
σ = .01 Ah

E > .12 Ah
µ = 2 Ah
σ = .5 Ah

E > 3 Ah

µ = 600 s
σ = 60 s

t ∈∈∈∈  [10:00, 13:50]

µ = 5 s
σ = 1 s

t ∈∈∈∈  [9:00, 16:00]

µ = .01 Ah
σ = 0 Ah

E > .02 Ah

µ = 5 s
σ = 1 s

t ∈∈∈∈  [9:00, 14:30]

v = 100

v = 10

v = 50v = 5

time

energy

energy

time

energy

time

 

Figure 3:  

 

Optimal value function for the example in Figure 2.The
left axis is increasing energy from 0 to 20. The right axis is start
time from 14:30 down to 13:20. Vertical axis is expected utility.
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ditional branches. The dynamic programming approach we
took above is an alternative, but it too is computationally ex-
pensive, and it fails completely when resource availability is
not monotonically decreasing (because optimization can no
longer be performed through a single backward pass).

 

Heuristic Approaches

 

One possibility is to try to plan for the worst case scenario.
Thus, in the example from the last section, we could assume
that the drive operation requires time and power that is one
or perhaps even two standard deviations above the mean.
The trouble is, this approach is overly conservative and
leads to plans with less science gain than is typically possi-
ble. In the example from the previous section, if plan execu-
tion was expected to begin at 13:45, this approach would
lead us to build a “safe” primary plan that replaces NIR
with the HiRes action, with expected utility of 10 in all
cases, instead of the more ambitious current primary plan,
with expected utility of 0 in the worst case, but 32 in the
average case and 100 in the best case. 

A more ambitious approach to the problem would be to
build an initial plan based on the expected behavior of vari-
ous activities and then attempt to improve that plan by aug-
menting it with contingent branches. This is the approach
taken by Drummond, Bresina and Swanson with their Just-
in-Case (JIC) telescope scheduling [11]. This approach is in-
tuitively simple and appealing, but extending it to problems
like the one we have outlined is non-trivial. The primary dif-
ficulty is to decide where contingent branches should be
added to a plan. In JIC scheduling, branches were added at
the points with the greatest probability of plan failure. Given
the distributions for time and resource usage this is relatively
easy to calculate by statistical simulation of the plan. Unfor-
tunately, the points most likely to fail are not necessarily the
points where useful alternatives are available. The points of
maximal failure probability may be too late in the plan to
have enough time or power left for any useful alternative.

Unfortunately, the problem of finding “high utility”
branch points is non-trivial. Figure 5 shows the expected

utility over time of the possible plans with a single branch,
for a fixed starting energy of 11. Note that at earlier start

times, the plans with the highest expected utility are those
that postpone the decision to later in the primary plan, where
the possibility of receiving the 100 reward for the NIR action
can be more accurately assessed. In a small region, the ex-
pected utility of the full RockFinder plan makes that plan
more valuable. As time advances, the probability of succeed-
ing in either the primary plan or the full RockFinder plan di-
minishes, and the HiRes branch becomes the dominant plan.
Without the HiRes branch, the early branch to the RockFind-
er plan (slightly) dominates the other branches late in the
time window, since delaying that branch may, with small
probability, cause a failure due to energy, resulting in no util-
ity. 

 

Finding the Branch Conditions

 

Once we've decided to add a branch to a plan, there is still a
problem of deciding under what conditions to take the
branch. Once again, we could use dynamic programming to
compute the optimal conditions, but this suffers from the
problems we described above. In addition, as Figure 3 illus-
trates, the optimal conditions can be extremely complex and
hard to represent. The flat surfaces of utility 5 and 55 corre-
spond to branching to the RockFinder plan before the first
step of the primary plan. The primary plan (along with the
later possible branch to the HiRes plan) is of higher expected
utility where the surface is curved. The conditions for the
branch point at the beginning of the primary plan are thus the
boundaries between the curved surfaces and the flat surfac-
es. The boundaries are in this case discontinuous, corre-
sponding to a disjunctive condition

It is important to bear in mind that the boundaries are
generally places where the values of two different branches
are equal, which means that approximate solutions will usu-
ally be acceptable here. One possibility is to treat the contin-
uous dimensions of the problem as independent, which
results in rectangular regions. This works well in most cases,
but the boundaries must be chosen with care where there are

 

Figure 4:  

 

Slice of the optimal value function for energy = 11 Ah,
along with the component curves that contribute to the overall
utility.
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Figure 5:  

 

Utility for a single branch at different possible branch
points with energy = 11.
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abrupt edges in the value function. This approximation may
also fail if there are dependencies between the dimensions,
for example when the energy used for driving is dependent
on the actual time spent, rather than being treated indepen-
dently as in our example.

 

Conclusions

 

For a Mars rover, uncertainty is absolutely pervasive in the
domain. There is uncertainty in the duration of many activi-
ties, in the amount of power that will be used, in the amount
of data storage that will be required, and in the location and
orientation of the rover. Unfortunately, current techniques
for planning under uncertainty are limited to simple models
of time, and actions with discrete outcomes. In the rover do-
main there is concurrent action, actions of differing dura-
tion, and most of the uncertainty is associated with
continuous quantities like time, power, position and orienta-
tion. 

For any non-trivial problem, it seems unlikely that exact
or optimal solutions will be possible. Nor do we have good
heuristic techniques for generating effective contingent
plans. It seems that new and dramatically different ap-
proaches are needed to deal with this kind of problem.

 

Acknowledgments

 

Thanks to Tania Bedrax-Weiss, Jeremy Frank, Keith Golden
and Sailesh Ramakrishnan for discussions on this subject
and comments on drafts of the paper. This research was sup-
ported by NASA Ames Research Center and the NASA In-
telligent Systems program.

 

References

 

1 Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic Search
+ Symbolic Model Checking = Efficient Conformant Plan-
ning. 

 

Proc. 17th Int. Joint Conf. on AI

 

.

2 Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in Nondeterministic Domains under Partial Observ-
ability via Symbolic Model Checking. 

 

Proc. 17th Int. Joint
Conf. on AI

 

.

3 Blum, A, and Langford, J. 1999. Probabilistic Planning in the
Graphplan Framework

 

. Proc. 5th European Conf. on Plan-
ning

 

.

4 Blythe, J. 1998. Planning Under Uncertainty in Dynamic
Domains. Ph.D. Dissertation. Carnegie Mellon University.

5 Blythe, J. 1999. Decision

 

-

 

theoretic planning. 

 

AI Magazine

 

20(2), 37–54.

6 Bonet, B., and Geffner, H. 2000. Planning with Incomplete
Information as Heuristic Se arch in Belief Space. 

 

Proc. 5th Int.
Conf. on Artificial Intelligence Planning and Scheduling

 

, 52–
61.

7 Boutilier, C, Dean, T, and Hanks, S. 1999. Decision theoretic
planning: structural assumptions and computational leverage.

 

JAIR

 

 11, 1–94.

8 Castellini, C., Giunchiglia, E, and Tacchella, A. 2001.
Improvements to sat-based conformant planning. 

 

Proc. 6th
European Conf. on Planning.

 

9 Cimatti, A., and Roveri, M. 2000. Conformant Planning via
Symbolic Model Checking. 

 

JAIR

 

 13, 305–338.

10 Draper, D. Hanks, S., and Weld, D. 1994. Probabilistic plan-
ning with information gathering and contingent execution.

 

Proc. 2nd Int. Conf. on AI Planning Systems

 

, 31–36.

11 Drummond, M, Bresina, J, and Swanson, K. 1994. Just-In-
Case scheduling. 

 

Proc. 12th National Conf. on AI

 

, 1098–1104.

12 Etzioni, O, Hanks, S, Weld, D, Draper, D, Lesh, N. and Will-
iamson, M. 1992. An approach to planning with incomplete
information. 

 

Proc. 3rd Int. Conf. on Principles of Knowledge
Representation and Reasoning

 

, 115–125.

13 Ferraris, E. and Giunchiglia, E. 2000. Planning as Satisfiabil-
ity in Nondeterministic Domains. 

 

Proc. 17th National Conf.
on Artificial Intelligence

 

.

14 Golden, K. 1998. Leap before you look: information gathering
in the PUCCINI planner. 

 

Proc. 4th Int. Conf. on AI Planning
Systems

 

, 70–77.

15 Goldman, R. and Boddy, M. 1994. Conditional linear plan-
ning. 

 

Proc. 2nd Int. Conf. on AI Planning Systems

 

, 80–85.

16 Kurien, J., Nayak, P., and Smith, D. 2002. Fragment-based
conformant planning, To appear in 

 

Proc. 6th Int. Conf. on AI
Planning & Scheduling.

 

17 Kushmerick, N., Hanks, S., and Weld, D. 1995. An algorithm
for probabilistic planning. 

 

Artificial Intelligence

 

 76(1–2),
239–286.

18 Littman, M., Goldsmith, J. and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. 

 

JAIR

 

 9,
1–36.

19 Majercik, S. and Littman, M. 1999. Contingent Planning
under Uncertainty via Stochastic Satisfiability. 

 

Proc. 16th
National Conf. on AI

 

.

20 Meuleau, N., Hauskrecht, M, Kim K., Peshkin, L, Kaelbling,
L., Dean, T. and Boutilier, C. 1998. Solving very large weakly
coupled Markov decision processes. 

 

Proc. 15th Nat. Conf. on
AI

 

. 165–172.

21 Munos, R. 2000. A study of reinforcement learning in the con-
tinuous case by the means of viscosity solutions. 

 

Machine
Learning Journal

 

 40, 265–299, 2000.

22 Onder, N. and Pollack, M. 1999. Conditional, Probabilistic
Planning: A Unifying Algorithm and Effective Search Control
Mechanisms. 

 

Proc. of the 16th National Conf. on AI

 

, 577–584.

23 Peot, M. 1998. 

 

Decision-Theoretic Planning

 

. Ph.D. disserta-
tion, Dept. of Engineering-Economic Systems, Stanford U.

24 Peot, M, and Smith, D. 1992. Conditional nonlinear planning,

 

Proc. 1st Int. Conf. on AI Planning Systems

 

, 189-197.

25 Pryor, L. and Collins, G. 1996. Planning for contingencies: a
decision-based approach. 

 

JAIR 4, 287–339.

26 Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming, Wiley.

27 Rintanen, J. 1999. Constructing Conditional Plans by a Theo-
rem Prover, Journal of Artificial Intelligence Research 10,
323–352

28 Singh, S. and Cohn, D. 1998. How to dynamically merge
Markov decision processes, Advances in Neural Information
Processing Systems 11.

29 Smart, W. and Kaelbling, L. 2000. Practical reinforcement
learning in continuous spaces. Proc. 17th Int. Conf. on
Machine Learning.



January 24, 2002 7

30 Smith, D., Frank, J., and Jónsson, A. 2000. Bridging the gap
between planning and scheduling. The Knowledge Engineer-
ing Review 15(1), 2000. 

31 Smith, D, and Weld, D. 1998. Conformant Graphplan. Proc.
15th National Conf. on AI, 889–896.

32 Thrun, S. 2000. Monte Carlo POMDPs. Advances in Neural
Information Processing Systems 12, 1064–1070.

33 Warren, D. 1976. Generating Conditional Plans and Programs.
Proc. Summer Conf. on AI and Simulation of Behavior.

34 Weld, D, Anderson, C. and Smith, D. 1998. Extending Graph-
plan to handle uncertainty & sensing actions. Proc. 15th
National Conf. on AI, 897–904.


